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ABSTRACT 

 

 With growing concerns for the environment, dwindling amounts of fossil fuels 

available for worldwide consumption and more resistant strains of diseases and 

infections becoming a reality, organic chemistry plays a vital role in the improvement 

and sustainability of modern society.  Industrial chemicals from renewable sources has 

become an important area of research in recent years, while the synthesis and study of 

biologically active small molecules and their analogues leads to advancements which 

can help improve overall human health. 

 In this dissertation, we explore methods to create important industrial molecules 

from biorenewable sources, extend a novel cyclization to make heterocyclic compounds, 

and develop a new route towards a natural product that is active against tumor cells 

which resist current cancer treatments.  Chapter 1 discusses the synthesis of an important 

industrial compound, terephthalic acid, from malic acid, which can be obtained from 

biorenewable feedstocks.  This work was performed in collaboration with chemical 

engineers at the Center for Biorenewable Chemicals.  Chapter 2 describes the extension 

of the Kraus indole synthesis to biologically important natural products such as 

isocryptolepine and the indolo[2,1-a]isoquinoline series.  Chapter 3 discusses advances 

made towards the total synthesis of a marine alkaloid, oroidin, including a novel 

cyclization to install the important 2-aminoimidazole portion of the molecule. 
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CHAPTER 1 

EVALUATION OF A BIORENEWABLE ROUTE TO AROMATICS FROM 

PYRONES 

  

Introduction 

As the availability of fossil fuels decreases, growing worldwide energy demands 

necessitate the development of a sustainable economy.  New, cost-effective methods to 

create commodity chemicals from renewable feedstocks are gaining importance.  Some 

biobased routes to industrially significant compounds, such as 1,3-propanediol, have 

been reported.
1
  Unfortunately, there are few reported preparations of aromatic 

chemicals such as terephthalic acid.
2
 

Terephthalic acid is an important commodity chemical produced from petroleum 

feedstocks.
3
  Terephthalic acid (1) and its dimethyl ester, dimethyl terephthalate are used 

in the preparation of polyethylene terephthalate (PET), a thermoplastic polymer used in 

beverage and food containers and in fabrics and in polytrimethylene terephthalate, a 

material found in carpets and upholstery.  Traditionally, it is synthesized by the stepwise 

oxidation of para-xylene with molecular oxygen in acetic acid using a catalyst 

consisting of cobalt, manganese and bromine (Scheme 1).  The reaction is conducted at 

elevated temperatures in the range of 175 – 225 °C and pressures reaching 3000 kPa.
4
  

This oxidation process occurs in near quantitative yields, necessitating an alternative 

route to give a high conversion as well. 
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Scheme 1. Oxidation of p-xylene to 1 

In 2009, global terephthalic acid production was greater than 50 million tons.
5
  

Therefore, an efficient, green route to terephthalic acid could have a large impact.  Green 

chemistry is broadly defined as the development of chemical processes that control the 

generation of hazardous materials.
6
  In 1998, the 12 Principles of Green Chemistry was 

published by Paul Anastas and John Warner.
7
  These principles helped define how to 

improve chemical processes, especially at the industrial scale, to be better for the 

environment.  As part of a collaborative effort to produce biorenewable chemicals using 

enzyme catalysis followed by chemical catalysis,
8
 we were interested in developing a 

synthesis of terephthalic acid following green principles.  Of the most importance to us 

were the use of renewable feedstocks and the use of catalysts instead of stoichiometric 

reagents.  Our goal was to use a Diels-Alder reaction of a known 2-pyrone, coumalic 

acid (2), with a suitable dienophile to give terephthalic acid (R = CO2H, 1) without the 

need for oxidation (Scheme 2).  This would eliminate the need for transition metal 

catalysts in the oxidation step of the current industrial preparation of 1.  In order for this 

route to be effective, a renewable route to coumalic acid would need to be developed, 

this will be discussed later.  
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Scheme 2. Proposed synthesis of 1 

The Diels-Alder reaction of 2-pyrone (3) with symmetrical and unsymmetrical 

alkenes and alkynes is well known in the literature.
9
  Not surprisingly, Diels and Alder 

published the first [4+2] cycloaddition of a 2-pyrone and appropriate dienophile in 

1931.
10

  An important result was discovered in 1937, when Alder and Ricket showed 

that by using an acetylenic dienophile, the intermediate oxabicyclo[2.2.2]ocetene would 

spontaneously lose CO2 to give aromatic products (Scheme 3).
11

  Along the pathway to 

terephthalic acid, we sought to employ coumalic acid or possibly coumalate esters.  The 

Diels-Alder sequence to aromatic products also has good literature precedent when 

coumalates are used as the diene.
9 

 

Scheme 3. Aromatic compounds from 3 and acetylenes 

When an acetylenic dienophile is employed, the bicyclic intermediate is too 

unstable to be isolated and rapidly loses CO2 to give aromatic products.  If the alkyne is 

symmetrical, only one possible product is possible.  Ziegler and coworkers reacted many 

symmetrical alkynes with 2-pyrones.
12

  The electronics of the diene and dienophile play 
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an important role in the yield of this reaction sequence.  When an electron-poor 

dienophile is matched with an electron-rich diene, better yields are generally achieved.  

When methyl coumalate (4a) was heated with acetylene 5a, the triester 6a was formed in 

48% yield.  When a more electron-rich pyrone, 4b, was used with electron-poor 

acetylene 5b, the product 6b was achieved in 96% yield (Scheme 4). 

 

Scheme 4. Aromatic compounds from coumalates and symmetrical acetylenes 

Unsymmetrical acetylenes have also been successful for the Diels-Alder reaction 

with 2-pyrones, although they can give two different regioisomers as products.  When 4b 

is reacted with phenylacetylene (7) only modest regioselectivity is observed.
13

  The 

product where the ethyl ester is para to the phenyl substituent (8) is favored 4 to 1 over  

the meta isomer (9, Scheme 5). 

 

Scheme 5. Aromatic products from coumalates and unsymmetrical acetylenes 

Leonard and coworkers have shown that the cycloaddition with coumalates and 

alkynes can also follow an inverse-electron-demand Diels-Alder pathway.
14

  When 

electron-rich propargyl alcohol (10) is reacted with methyl coumalate (4a), a 2.3 : 1 
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mixture of the para (11a) and meta (11b) disubstituted products are obtained in 71% 

overall yield.  If a more electron-rich pyrone, methyl isodehydroacetate (4b) is employed 

with 10, longer reaction times are needed and a lower yield is observed, although only 

12 is isolated (Scheme 6). 

 

Scheme 6. Reaction of coumalates with 10 

 The natural progression of this chemistry is to expand to using alkenes as the 

dienophile.  In this case, after decarboxylation, the formed cyclohexane ring is one 

oxidation short of aromaticity.  In 1975, Corey proved that this dihydrobenzene can be 

isolated as the major product.
15

  When 3-hydroxy-2-pyrone (13) was reacted with methyl 

acrylate (14), the dihydro compound 15 was obtained in 56% yield (Scheme 7). It was 

reasoned that the strongly electron-donating hydroxyl group helps direct the Diels-Alder 

reaction to give the ortho disubstituted product. 

 

Scheme 7. Isolation of dihydro product (15) from methyl acrylate (14) 

In an attempt to produce aromatic products in one step from coumalates and 

alkenes, Matsushita and coworkers used palladium on activated carbon (Pd/C) to 
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dehydrogenate the dihydro intermediate in situ.
16

  When methyl coumalate is used as the 

diene with alkene dienophiles, the intermediate cyclohexadiene is prone to participating 

in subsequent cycloadditions to give bicyclo[2.2.2]oct-2-ene derivatives.  The use of 

Pd/C alleviates that problem and allows aromatics to be synthesized directly from 2-

pyrones and alkenes.  Aromatic alkenes have also been shown to be successful 

dienophiles.  The reaction of methyl coumalate (4a) with styrene (16) in refluxing m-

xylene with 2.5 weight percent of 10% Pd/C gave the para-disubstituted product (17) in 

81% yield (Scheme 8).  When methyl groups were added to the 4 and 6 positions of the 

pyrone, comparable yields were achieved although higher temperatures were required 

(200 °C). 

 

Scheme 8. Direct formation of aromatics from styrene and 4a 

 Recently, Kraus and Riley developed a method to prepare disubstituted aromatic 

compounds from methyl coumalate or coumalic acid and unactivated terminal alkenes, 

otherwise known as alpha-olefins.
17

  A similar route was followed, dehydrogenation of 

the bicyclic intermediate with Pd/C to give the aromatic products after loss of CO2.  As 

is the case with other unsymmetrical dienophiles, both the meta and para disubstituted 

products can form.  Surprisingly, when 1-decene (R’ = CH2(CH2)6CH3) was reacted with 

4a, only the para product was formed (Scheme 9).  Although the reason for the observed 

regioselectivity is not known, it has been hypothesized that steric interactions could play 
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a role, as well as selective oxidation by Pd/C of only the intermediate leading to the 

desired product.  Other long-chain alpha-olefins as well as allyl benzene and allyl ethers 

gave good yields (51-85%) with methyl coumalate and coumalic acid, which both 

showed greater than 99% selectivity.  The 4-alkyl benzoate products are known to be 

able to be able to be oxidized to terephthalic acid or its mono ester.
18 

 

Scheme 9. Reaction of alpha-olefins with 2 and 4a 

 

Results and Discussion 

 Literature reports have shown that cycloaddition reactions with coumalates and a 

wide variety of alkenes or alkynes are possible via either a traditional or inverse-

electron-demand process.  To reach our goal of terephthalic acid or dimethyl 

terephthalate production from either methyl coumalate or coumalic acid, we envisaged a 

reaction with activated alkenes or alkynes bearing an ester group to give the terepthalate 

derivative.
19

  If an acrylate or acrylate equivalent could be used, the oxidation of the 

alkyl group to the final product could be avoided.  For the initial scope of this study, 

methyl coumalate is generally used due to its increased solubility in toluene and its 

lowered solubility in water compared to coumalic acid. 

 The reaction of activated alkenes with methyl coumalate gave bicyclic lactones 

that are oxidized in situ by a catalytic amount of Pd/C to the aromatic products.  An 
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advantage to using activated alkenes is the ability to conduct the reactions at lower 

temperatures in the range of 140 to 160 °C instead of 200 °C when alpha-olefins were 

employed.  Initially, methyl (18a) and ethyl acrylate (18b) were reacted with methyl 

coumalate (4a) under our standard conditions (Scheme 10).  Unfortunately, these 

reactions displayed little regioselectivity.  The ratio of 1,4- to 1,3-disubstituted products 

was about 3:1 in both cases, while the yields were 25% and 38% for methyl and ethyl 

acrylate, respectively.  The low yields could be due to poor matching of the electronics 

of the diene and dienophile.  A more electron-rich 2-pyrone would be expected to give 

better yields when reacted with acrylates.
9
  There have been reports where the potassium 

salts of isophthalic acid and phthalic acid were converted into terephthalic acid, although 

the reaction was run using cadmium salts and temperatures over 400 °C.
20, 21 

 

Scheme 10. Diels-Alder reaction with activated alkenes 

 Analysis of the proposed intermediates in Scheme 10 show that the two esters are 

spatially closer in the intermediate leading to the 1,3-disubstituted product than the 1,4-

product.  By increasing the steric size of the ester, it could be possible to improve on the 

regioselectivity of the para product.  Our attempt to realize this goal was to use the much 
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larger N,N-diisopropylethylamine salt of acrylic acid (19).  When reacted with 4a, this 

salt gave the mono ester of isophthalic acid (20) as the only isolated aromatic product in 

45% yield.  This is still an interesting result even though the opposite regiochemistry of 

what was expected was observed.  Although we do not know enough about the 

mechanism of this transformation to give a definitive explanation for the selectivity, it 

could be hypothesized that the reaction proceeds through the exo transition state shown 

in Scheme 11 to minimize non-bonded interactions.  Using the salts of coumalic acid and 

acrylic acid could be envisioned to improve selectivity.  Unfortunately, these compounds 

showed limited solubility in organic solvents such as toluene or ethyl acetate.  Attempts 

to use water as the solvent gave complex mixtures containing no aromatic compounds. 

 

Scheme 11. Diels-Alder reaction with an amine salt of acrylic acid 

 As discussed previously, when acetylenic dienophiles are used, the final 

oxidation step, and therefore Pd/C, was not necessary.  We also employed propiolic acid 

(21a) and methyl propiolate (21b) for our Diels-Alder processes.  It was believed that 

the additional double bond in the bicyclic intermediate would enforce the proximity of 

the two esters leading to the 1,3-product (Scheme 12).  The steric interactions would 

disfavor the formation of this intermediate.  Surprisingly, a 1:1 mixture of regioisomers 

was the outcome with either propiolate.  Propiolic acid gave a 64% overall yield of the 

mixture of products, while the yield for methyl propiolate was 58%.  Attempts to use the 
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tert-butyl ester to increase steric demand led to a mixture of products involving loss of 

the tert-butyl group.  Since salts of propiolic acid have been reported to decompose 

under thermal conditions,
22

 these reactions were not attempted.  

 

Scheme 12. Diels-Alder reactions of propiolates 

 In an attempt to understand the lack of selectivity for these Diels-Alder reactions 

with activated dienophiles, we looked to other commercially available compounds such 

as acrylonitrile and acrolein.  As shown in Scheme 13, the reaction of 4a with 

acrylonitrile (22) showed better regiochemical control than the propiolates.  A mixture of 

the isomers was obtained in 60% yield with a 1.7:1 ratio favoring the 1,4-product.  Our 

best result came with the reaction of acrolein (23), which gave a 4.3:1 ratio in 47% 

overall yield of the purified isomers.  This result is important because the conversion of 

4-formyl benzoates into terephthalates has been reported by Borhan.
23 

 

Scheme 13. Diels-Alder reactions with acrylonitrile and acrolein 
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 In attempting to understand the regiochemical outcome of the Diels-Alder 

reaction of activated dienophiles with methyl coumalate we explored the influence of 

steric effects on the distribution of meta and para products.  It quickly became apparent 

that electronic effects also must play a significant role in determining the outcome.  In 

order to better understand this role and possibly help predict future experiments, we 

sought the expertise of Dr. Arthur Winter’s group at Iowa State University to calculate 

transition state energies by performing density functional theory (DFT) calculations. 

 All DFT calculations were performed using the Gaussian09 software suite
24

 

employing the B3LYP functional, which consists of the Becke hybrid 3-parameter 

exchange functional with the correlation functional of Lee, Yang, and Parr.
25

 The 3-21G 

basis set was employed to identify the lowest energy product rotamers, and the 6-

31+G(d,p) basis set was used to calculate the geometries and energies of the starting 

materials, products, and transition states. In all cases for starting materials and products, 

optimized geometries were found to have zero imaginary frequencies, indicating that the 

structures represent local minima on the potential energy surfaces.  Energy corrections 

for the zero-point vibrational energy were added unscaled. Transition states for forming 

these products were located using the Quasi-Newton Synchronous Transit method 

(QST3).  Of note, transition state barriers for related Diels-Alder reactions with this level 

of theory have been shown to give good agreement with experiment.
26

 Computed 

transition state structures were all found to have one imaginary frequency that connected 

the starting materials and the product. 
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 The calculations were performed for the reactions with methyl acrylate, 

acrylonitrile, acrolein, and methyl propiolate as dienophiles.  The basis for the 

calculation was to find the lowest energy transition states which lead to the meta and 

para isomers, respectively.  Comparison of these energies should correspond to the 

experimentally observed results.  There are different rotamers possible for each 

transition state, some of which are shown in Figure 1 for methyl acrylate. 

 

Figure 1. Representation of the different stereoisomers and rotamers 

 The lowest-energy rotamer for each isomer for the Diels-Alder products was 

determined by optimizing each structure at the B3LYP/3-21G level of theory.  The 

lowest energy rotamer for each stereoisomer computed at this level of theory was used 

as the product for transition state searches.  The geometries and energies of the starting 

materials, product and transition states for each isomer were then computed at the 

B3LYP/6-31+G(d,p) level of theory.  The transition states are shown in Figure 2.  
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Figure 2. Computed lowest-energy transition states 

The computations suggest nearly degenerate transition states leading to the meta 

and para bicyclic adducts for methyl acrylate and methyl propiolate, which would be 

expected to lead to nearly equal product mixtures (Table 1).  This is found 

experimentally with methyl propiolate, although methyl acrylate leads to a larger 

experimental ratio of para over meta (3:1).  The transition state leading to the para 

isomer is computed to be lower for the acrylonitrile and acrolein dienophiles by 1.52 and 

2.20 kcal/mol, respectively, which would be expected to yield product ratios of ~6:1 and 

13:1 of the para product over meta product.  The trend in the computed ratios is in 
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reasonable agreement with the experimentally observed ratios of 1.7:1 and 4.3:1 

favoring the para isomer, respectively. 

Table 1.  Computed energies and differences between meta and para transition states 

Dienophile 
H

‡
 

(kcal/mol)
a
 

Computed 

para/meta 

ratio
b
 

H
‡ 
para 

(kcal/mol)
 

H
‡ 
meta 

(kcal/mol) 

 
 -0.07 

 

 

0.9 

 

 

28.10 

 

 

28.03 

 

 

 
 

1.52 

 

 

5.8 

 

 

29.09 

 

 

30.60 

 

 

 
 

2.20 

 

 

12.9 

 

 

25.50 

 

 

27.70 

 

 

 
 

0.21 

 

 

1.3 

 

 

29.53 

 

 

29.74 

 

 

a. H
‡
 = H

‡
meta - H

‡
para 

b. para/meta ratio = e^((H
‡

meta - H
‡

para)/RT) 

 

 An important result is that it appears there is no evidence of steric effects being 

important to the regiochemical outcome.  A search of the literature shows the 

regiochemistry of Diels-Alder reactions can normally be predicted using frontier 

molecular orbital theory.
27

  This approach, however, predicts the meta isomer should be 
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favored.  This leads us to believe that a secondary orbital interaction may be the reason 

why the opposite, para isomer is experimentally and computationally favored.
28

  We 

attribute this unexpected regioselectivity to a secondary orbital interaction between the 

pyrone oxygen contribution to the HOMO and LUMO on the dienophile that favors the 

transition state leading to the para product.  This interaction may be strong enough to 

invert the natural electronic preference for these reactions. 

 Although many advances have been made towards producing terephthalic acid 

derivatives from methyl coumalate, the coumalates are still compounds derived from 

petroleum sources.  In order for this chemistry to become relevant and a possible 

replacement for current technologies, coumalic acid, or its esters must be able to be 

derived from a renewable source.  After reviewing the literature, the solution to this 

problem became evident.  In 1891, von Pechmann reported the transformation of malic 

acid (24) into coumalic acid (2) by the action of fuming sulfuric acid at steam bath 

temperatures (Scheme 14).
29

  Surprisingly, this seems to be the only reported preparation 

of coumalic acid, although the von Pechmann conditions were described in an Organic 

Synthesis article on a 100 gram scale.
30

  Kaminski and Kirsh have also recently 

described a synthesis using a more concentrated solution of sulfuric acid.
31 

 

Scheme 14. von Pechmann coumalic acid (2) synthesis from malic acid (24) 
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 Malic acid is a naturally occurring compound found in fruits such as apples and 

grapes.  More importantly, it is primarily derived from fermentation processes.  It has 

been shown that malic acid can be biomass-derived via enzymatic processes from 

glucose.  In one case, a genetically altered Saccharomyces cerevisiae enzyme is able to 

produce 0.42 moles of malate per mole of glucose.
32

  Although the conversion would 

preferably be 100%, this result still shows that malic acid can be derived from a 

renewable source. 

The intermediate in this transformation is formyl acetic acid (25).  Two 

molecules of this aldehyde acid react to produce one molecule of coumalic acid after 

loss of two molecules of water (Scheme 15).  Although this reaction is suitable for a 

multigram laboratory scale, scaling these corrosive reaction conditions to a pilot plant 

scale would not be feasible.  Therefore, alternative reaction conditions are needed.  The 

mechanism by which malic acid is transformed into the aldehyde acid was recently 

studied.
33

  There is vigorous gas evolution at the beginning of the reaction.  The gas is 

carbon monoxide, suggesting a direct protonation of the carboxylic acid as an early step.  

Interestingly, less than five percent of fumaric acid is produced under these strongly 

acidic conditions. 

 

Scheme 15. Conversion of malic acid (24) into coumalic acid (2) 
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Since a strong acid and heat are needed to protonate the carboxylic acid, we 

examined several strong anhydrous acids.  The results are collated in Table 2.  

Concentrated sulfuric acid in dichloroethane (DCE) afforded coumalic acid in very good 

yield.  Adding a weaker co-acid such as acetic acid (AcOH) or trifluoroacetic acid (TFA) 

lowered the reaction yields.  The respective anhydrides, acetic anhydride (Ac2O) and 

trifluoroacetic anhydride (TFAA), were also employed to remove water, but there was 

no significant difference observed.  Using acetic or trifluoroacetic acid without sulfuric 

acid present gave small amounts of o-acylated products and returned starting material.  

The more strongly acidic sulfonic acids, triflic acid and nonafluorobutanesulfonic acid, 

gave coumalic acid in good yields, while methanesulfonic acid gave mixtures of 2 and 

26.  Unexpectedly, para-toluenesulfonic acid gave a 71% yield of fumaric acid.  This is 

probably not industrially significant since the thermal conversion of malic acid into 

fumaric acid is known.
5
  With the best conditions discovered to date, we scaled up the 

reaction with triflic acid as well as sulfuric acid and obtained an 86% and 80% yield of 

coumalic acid, respectively, on a five-gram scale. 
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Table 2. Conditions for the conversion of 24 into 2

 

Acid Temperature Solvent Additive Yield 2 Yield 26 

H2SO4 100 DCE None 80 5 

H2SO4 120 AcOH None 4 3 

H2SO4 120 AcOH Ac2O 6 9 

H2SO4 80 TFA None 51 1 

H2SO4 80 TFA TFAA 44 0 

MeSO3H 100 DCE None 14 25 

CF3SO3H 100 DCE None 86 4 

C4F9SO3H 100 DCE None 65 2 

PTSA 120 None None 0 71 

 

 Considering much of our current studies have been with methyl coumalate 

instead of coumalic acid, it is reasonable to attempt to extend the coumalic acid synthesis 

from malic acid to be able to make methyl coumalate as well.  With excess amounts of a 
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strong acid already in the reaction pot to undergo the formation of coumalic acid from 

malic acid, we believed we could just add methanol to convert the forming carboxylic 

acid into the methyl ester.  When an excess of methanol was added before heating the 

reaction, mixtures of dimethyl maleate (27) and dimethyl fumarate (28) were formed 

(Scheme 16).  These products must have formed due to esterification of the carboxylic 

acids followed by acid-catalyzed dehydration.  

 

Scheme 16. Attempt at methyl coumalate from malic acid (24) 

Gratifyingly, when the reaction mixture was cooled, and then methanol was 

added to the crude coumalic acid solution and heated again, methyl coumalate was 

afforded in 70% overall yield.  Concentrated sulfuric acid was used in this case due to its 

ease of handling compared to the stronger triflic acid.  This one-pot reaction sequence 

was scaled up to 5 grams and gave similar results. 

 

Conclusion 

 In the near future, there is a pressing need for alternative sources of industrially 

significant chemicals.  The current path to terephthalic acid is through the oxidation of p-

xylene, acquired from petroleum sources.  We have sought to create a greener route from 

sustainable sources.  We have studied an interesting Diels-Alder reaction between 

coumalates and activated dieneophiles, bearing an electron-withdrawing group towards 
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the goal of biobased terephthalic acid production.  After decarboxylation, these adducts 

give disubstituted aromatic products either directly if an alkyne is employed, or after 

concomitant dehydrogenation by a Pd/C catalyst in the case of alkene dienophiles.  Both 

pathways have the potential to form either the para or meta disubstituted aromatic 

products based on which transition state predominates.  Through experimental and 

computational studies, we have extended our knowledge of the possible steric and 

electronic factors that control the regiochemical outcome.  Although the regioselectivity 

has been modest for this system, we have gained valuable knowledge for formulating 

future reactions and conditions. 

 Along the way, we explored coumalic acid and methyl coumalate as platform 

chemicals.  We have shown that these compounds can be transformed into a variety of 

disubstituted aromatic compounds and in a few cases, monosubstituted benzenes.  These 

examples are shown in Figure 3.  Unexpectedly, when the diisopropylethylamine salts of 

coumalic acid and acrylic acid are reacted under our conditions, a decarboxylation 

occurs, giving benzoic acid as the major product.  When butyl vinyl ether is used as the 

dienophile, butanol is lost in the aromatization step and benzoates are formed.  Studies 

are ongoing in the Kraus lab currently to explore the effects of different leaving groups 

on the aromatization. 
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Figure 3. Coumalates as platform chemicals 

 In order to make our route to terephthalates from coumalates renewable, we 

needed a sustainable source of coumalic acid and its esters.  We developed a synthesis 

that improved upon previous work using malic acid which can be available from glucose 

through fermentation processes.  Our route avoids the use of corrosive, dehydrating 

fuming sulfuric acid, and demonstrates the utility of other strong acids, such as sulfonic 

acids.  Using dichloroethane as the solvent allowed for much lower quantities of acid 

used.  When concentrated sulfuric acid is employed an 80% yield of coumalic acid is 

obtained, while triflic acid gives 86% yield.  By converting the pre-formed carboxylic 
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acid of coumalic acid to its methyl ester with methanol, methyl coumalate has also been 

synthesized in one-pot in 70% yield using concentrated sulfuric acid as the reagent.  We 

have demonstrated the scalability of our syntheses of coumalic acid and methyl 

coumalate by successfully repeating the reactions on a 5 gram scale.  Considerable 

advances have been made towards the biorenewable synthesis of terephthalic acid and 

other aromatic compounds through coumalates produced from malic acid as a renewable 

source and electron-deficient, activated dienophiles. 

 

Experimental 

All NMR spectra were obtained on a Varian VXR spectrometer, operating at 300 

or 400 MHz for 
1
H NMR and 75 or 100 MHz for 

13
C NMR instrument.  Thin-layer 

chromatography was performed using commercially available 250 micron silica gel 

plates (Analtech).  Preparative thin-layer chromatography was performed using 

commercially available 1000 micron silica get plates (Analtech).  Visualization of TLC 

plates was effected with short wavelength ultraviolet light (254 nm).  All reagents were 

used as obtained commercially unless otherwise noted.  All products were either 

commercially available or known in the literature.  Product ratios were determined by 
1
H 

NMR integration (300 MHz) of purified mixtures of the isomers for the Diels-Alder 

procedure, or similar integration of crude mixtures of the reaction products for the 

conversion of malic acid to coumalic acid.  Products were determined by comparison of 

1
H NMR to known spectra. 
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Methyl coumalate Diels-Alder general procedure (alkenyl dienophiles): 

To a solution of methyl coumalate (0.078g, 0.5 mmol) and 10% Pd/C (0.020g, 25 wt%) 

dissolved in toluene in a sealable tube was added alkenyl dienophile (1.5 mmol, 3 

equiv.) at rt.  The mixture was sealed and stirred for 16 h at the temperature described.  

The reaction was cooled to rt, opened, filtered through Celite, washing with ethyl 

acetate, and concentrated in vacuo to give the crude product which was purified via flash 

column chromatography (hexanes:ethyl acetate) to give the desired compounds as 

inseparable mixtures of meta and para isomers.  
1
H NMR data was consistent with 

literature reported values for methyl 3-cyanobenzoate,
34

 methyl 4-cyanobenzoate,
35

 ethyl 

methyl isophthalate,
14

 ethyl methyl terephthalate,
14

 methyl 3-formylbenzoate
36

 and 

methyl 4-formyl benzoate.
37

 

 

Methyl coumalate Diels-Alder general procedure (alkynyl dienophiles): 

To a solution of methyl coumalate (0.078 g, 0.5 mmol) dissolved in toluene in a sealable 

tube was added alkynyl dienophile (1.5 mmol, 3 equiv.) at rt.  The mixture was sealed 

and stirred for 16 h at the temperature described.  The reaction was cooled to rt, opened, 

filtered through Celite, washing with ethyl acetate, and concentrated in vacuo to give the 

crude product which was purified via flash column chromatography (hexanes:ethyl 

acetate) to give the desired compounds as inseparable mixtures of meta and para 

isomers.  
1
H NMR data was consistent with literature reported values for mono-methyl 

isophthalate,
38

 mono-methyl terephthalate,
39

 dimethyl isophthalate
40

 and dimethyl 

terephthalate.
41
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mono-Methyl isophthalate (20): 

To a solution of acrylic acid (0.206 mL, 3 mmol), distilled to remove polymerized 

material, in toluene (5 mL, 0.2 M) was added N,N-diisopropylethylamine (0.174 mL, 1 

mmol) dropwise at rt.  The mixture was stirred for 30 min after which methyl coumalate 

(0.152 g, 1 mmol) was added, followed by 10% Pd/C (0.038 g, 25% / mass).  The 

reaction was heated to 140 °C for 16 h, then cooled and quenched with sat. aq. NH4Cl 

solution (10 mL).  The aqueous layer was extracted with EtOAc and the combined 

organic extracts were washed with brine and dried over MgSO4.  Filtration and 

concentration in vacuo gave the crude product which was purified via flash column 

chromatography (5:1–3:1 hexanes:EtOAc) to give mono-methyl isophthalate in 45% 

yield as a light yellow solid.  The 
1
H NMR spectrum was identical to published reports 

for mono-methyl isophthalate.
38

 

 

General procedures for coumalic acid (2) from malic acid (24): 

 

Procedure for sulfuric acid: 

To a solution of DL-malic acid (5g, 37.29 mmol) in dichloroethane (75 mL) was added 

concentrated sulfuric acid (9.94 mL, 186.45 mmol) and heated to 100 °C for 16 h.  After 

cooling to rt, the red solution was poured onto ice and stirred for 30 min.  The mixture 

was extracted with ethyl acetate (3x) and the combined organic extracts were washed 
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with ice-cold water (3x), dried over MgSO4, and concentrated in vacuo to give a 16:1 

mixture of coumalic acid and fumaric acid (26). 

 

Procedure for acetic acid and trifluoroacetic acid: 

To a solution of DL-malic acid (0.268 g, 2 mmol) in concentrated sulfuric acid (10 mL) 

was added solvent (10 mL) and additive (10 vol %) if needed as described in Table 1.  

The solution was heated to the specified temperature for 16 h, cooled to rt and poured 

onto ice.  The mixture was extracted with ethyl acetate (3x) and the combined organic 

layers were washed with ice-cold water (3x), dried over MgSO4, filtered and 

concentrated to give the crude products. 

 

General procedure for sulfonic acids: 

To a solution of DL-malic acid (0.268 g, 2 mmol) in dichloroethane (10 mL) was added 

sulfonic acid (5 equiv) and the solution was heated to 100 °C for 16 h.  After cooling to 

rt, the solution was poured onto ice (50 g) and stirred 30 min.  The mixture was extracted 

with EtOAc (25 mL x 3) and the combined organic extracts were washed with ice-cold 

water (25 mL x 3), dried over MgSO4, filtered and concentrated in vacuo to give the 

crude products. 

 

Procedure for para-toluenesulfonic acid: 

A mixture of L-malic acid and para-toluenesulfonic acid was heated to 120 °C with 

stirring, which resulted in melting of both solids into a red, viscous solution.  After 16 h, 
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the mixture was cooled to rt and quenched with H2O, extracted with ethyl acetate and 

washed with brine.  The combined organic layers were dried over MgSO4, filtered and 

concentrated to give fumaric acid (26) as a tan solid in 71% yield. 

 

Coumalic Acid (2): 

Prepared using the previously described general procedures from malic acid, most 

successfully by using sulfuric acid (80%) and trifluoroacetic acid (86%).  Light yellow 

solid.  
1
H NMR (300 MHz, CD3OD):  = 8.42 (dd, J = 0.9, 2.4 Hz, 1H), 7.86 (dd, J = 

2.7, 9.9 Hz, 1H), 6.36 (dd, J = 1.2, 9.6 Hz, 1H). 

 

Methyl Coumalate (4a): 

To a solution of DL-malic acid (1g, 7.46 mmol) in dichloroethane (10 mL, ~1 M) was 

added H2SO4 (1.99 mL, 37.29 mmol) slowly at 0 °C.  The mixture was warmed to rt then 

heated to 100 °C for 16 h.  After cooling to rt, methanol (1.51 mL, 37.29 mmol) was 

added and the solution was heated to 80 °C for 8 h.  After cooling, the reaction was 

carefully quenched with water and a saturated solution of sodium bicarbonate at 0 °C.  

The solution was extracted with EtOAc, washed with brine and dried over MgSO4.  

Filtration and concentration in vacuo gave the crude product which was purified via 

flash column chromatography (5:1-1:1 hexanes:EtOAc) to give methyl coumalate as a 
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yellow solid in 70% yield.  
1
H NMR (300 MHz, CDCl3): d = 8.31 (dd, J = 1.2, 2.7 Hz, 

1H), 7.79 (dd, J = 2.4, 9.6 Hz, 1H), 6.35 (dd, J = 0.9, 9.9 Hz, 1H), 3.91 (s, 3H). 
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CHAPTER 2   

EXTENSION OF A NOVEL INDOLE SYNTHESIS TO NATURAL PRODUCTS 

 

Introduction 

 The indole substructure is present in a wide variety of biologically significant 

natural products.
1
  Not surprisingly, numerous successful methods have been developed 

for the synthesis of indoles from a variety of different starting materials.  These synthetic 

approaches have been reviewed by Sundberg,
2
 and more recently, Taber and Tirunahari,

3 

who categorized the syntheses based on how the final bond of the indole subunit was 

formed (Figure 1). 

 

Figure 1. Taber and Tirunahari classification of indole syntheses
3
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 The nine types of indole syntheses categorized were identified by named 

reactions associated with the strategy or pioneering research groups.  A type 1 indole 

synthesis, such as the Fischer indole synthesis,
4
 involves a final bond forming step 

between an aryl C-H and the second sp
3
 hybridized carbon atom (C2) away from the 

indole nitrogen.  Another method of forming this carbon-carbon bond to close the indole 

ring is the Bartoli indole synthesis.  Reaction of ortho-substituted nitrobenzenes with 

vinyl Grignard reagents gives indoles with substitution possible on either the 5 or 6-

membered ring.
5
  Since the same final bond is formed, this is also a type 1 indole 

synthesis.  The Gassman approach
6
 to 2-substituted indoles from anilines also belongs to 

this class of indole formation reactions (Scheme 1). 

 

Scheme 1. Gassman indole synthesis 

 Anilines and hydrazones are some of the most common precursors to indoles.  

Hydrazones are intermediates in the Fischer and Japp-Klingemann
7
 syntheses of indoles.  

Larock developed a method which reacts an alkyne with an ortho-iodoaniline in the 

presence of palladium(0) and base to give indoles.
8
  Since the intermediate palladium 

species cyclizes onto the arylamine, this is classified as a type 5 reaction.  Ortho-

haloanilines also react with substituted alkenes and a palladium catalyst to give indole 

products (Scheme 2).
9
  The use of palladium in indole cyclization reactions has been 

well documented.
10
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Scheme 2. Indoles from ortho-substituted anilines 

 ortho-Alkylindoles have been less frequently used.  The Madelung synthesis is 

an example, employing cyclization of the dianion of an anilide at elevated 

temperatures.
11

  Another example is the Bischler indole synthesis, a convenient route to 

2-arylindoles via microwave-assisted coupling of anilines and bromoacetophenones.
12

  

In 2008, Kraus published a novel indole synthesis.
13

  This flexible strategy involves 

electrocyclic closure of the anion of an imine which arose from the reaction of an 

aromatic aldehyde with commercially-available phosphonium salt 1 (Scheme 3).  This 

sequence proceeds in one pot under mild reaction conditions. 

 

Scheme 3. Kraus indole synthesis 

 2-substituted indoles are readily available through this route by modifying the 

aldehyde component.  By adjusting the substitution at the benzylic position of 1, 2,3-

disubstituted indoles are also accessible.
14

  When using a phosphonium salt as the 

activating group, this method allows the synthesis of a wide range of substitution 

patterns; both electron-withdrawing and electron-donating groups are compatible.  These 

compounds are shown in Figure 2 and are achieved in high yields (72 – 100%) from 1 
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and the requisite aldehyde.
13

  The best conditions developed for our indole synthesis 

consisted of imine formation with a catalytic amount of acetic acid in methanol using 

microwave irradiation.  Conventional heating gave formation of the imine in lower 

yields and required longer reaction times.  Potassium tert-butoxide was employed as the 

base in tetrahydrofuran to afford cyclization to the indoles. 
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Figure 2. Scope of indoles prepared by Kraus and Guo
13
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The Kraus group also sought to understand which types of activating groups (G, 

Scheme 1) would allow cyclization to occur to form the indole.
15

  Sulfones, nitriles, 

phosphonates and sulfides were also employed as activating groups.  In an effort to 

extend the scope of this process, the synthesis of indole-containing natural products such 

as isocryptolepine (2, Figure 3), an indolo[2,3-b]quinoline alkaloid isolated from the 

roots of Cryptolepis sanguinolenta were attempted.  Compound 2 displays potent 

antimalarial activity, inhibiting Plasmodium falciparum with an IC50 of 0.8 m.
16

  

Isocryptolepine has been synthesized many times,
17

 most commonly by 

organopalladium-mediated coupling of substituted quinolines (Scheme 4).
18

 

 

Figure 3. Structure of isocryptolepine (2) 

 

Scheme 4. Palladium-catalyzed “amination-arylation” approach to 2 

Also of interest was the skeleton of indolo[2,1-a]isoquinolines (3, Figure 4), a 

diverse class of natural compounds which, along with its dihydro equivalents, exhibit a 

wide range of biological activities such as tubulin-binding,
19

 estrogen receptor 

modulation,
20

 and acting as semiconductors.
21

  This class of compounds is also well 

known in the literature.  The most common strategy involves organopalladium coupling 
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of 2-aryl indoles followed by cyclization.
22

  By choosing an appropriate aniline 

derivative and aldehyde, we were able to extend the Kraus indole synthesis to these 

natural product systems. 

 

Figure 4. Indolo[2,1-a]isoquinoline skeleton (3) 

 

Results and Discussion 

 Through attempts to modify the activating group towards the Kraus indole 

synthesis, our group has discovered that triphenylphosphine and arylsulfone groups are 

eliminated during the cyclization, while cyano groups remained in the structure of the 

final indole product.
15

  Based on these studies, a mechanism for indole formation was 

proposed (Scheme 4).  Formation of the imine from the aniline and aldehyde, followed 

by a base-mediated electrocyclic ring closure and a 1,5-hydrogen atom shift gave indole 

products. 
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Scheme 4. Proposed mechanism of Kraus indole synthesis 

 Two types of products can be formed depending on the nature of the activating 

group, G.  If G is sterically large, it is more likely to be oriented perpendicular to the 

aromatic ring in order to minimize nonbonded interactions.  Therefore, G would be in a 

successful position for elimination to give an intermediate that could form the indole 

after a 1,5-hydrogen shift.  On the other hand, if G is smaller, such as a nitrile, a wider 

range of conformations is possible.  If G is in the plane of the benzene ring, the benzylic 

hydrogen alpha to the nitrile would be very acidic.  Deprotonation, instead of 

elimination, could occur, followed by oxidation to give the 3-cyanoindole. 

 In an attempt to extend this chemistry to natural product synthesis, we set out to 

prepare indole-containing isocryptolepine and the skeleton of indolo[2,1-a]isoquinolines.  
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In order to incorporate the Kraus indole synthesis towards isocryptolepine, we set out to 

choose an appropriate aniline and benzaldehyde.  The intermediate we desired was 

aminophenylindole 5, which could come from the reaction of aminobenzaldehyde 4, and 

our traditional phosphonium salt 1 (Scheme 5).  Unfortunately, 4 was too unstable due to 

the molecule reacting with itself. 

 

Scheme 5. First approach to key intermediate 5 

 We then turned to nitrobenzaldehyde 6 to react with 1 to give nitrophenylindole 7 

in good yield under standard conditions (Scheme 6).  7 can be reduced readily by iron 

and hydrochloric acid in ethanol to give the desired aminophenylindole 5.  

Paraformaldehyde and trifluoroacetic acid furnished the aldehyde on the 3-position of 

the indole which cyclized in situ to give the tetracyclic system of isocryptolepine (8)  

The N-methylation of 8 has been accomplished previously using methyl iodide.
17

  

Therefore, our efforts constitute a formal synthesis of isocryptolepine (2) using the 

Kraus indole synthesis as the key transformation. 
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Scheme 6. Formal synthesis of 2 

 We next turned our attention to the skeleton of indolo[2,1-a]isoquinolines.  We 

were interested to see if we could use our indole technology to quickly gain access to the 

tetracyclic core.  Since this class of natural products is very diverse and displays a wide 

variety of biological activities,
19, 20, 21

 it is important to develop new, direct ways to put 

together the tetracyclic framework.  Our contribution to this system comes from the 

concise synthesis of 5H-indolo[2,1-a]isoquinoline (11).  Our synthesis (Scheme 7) 

commences with Kraus indole formation using 1 and benzaldehyde 9, which is known to 

come from the ozonolysis of indene.
23

  The obtained indole 10 contains a tethered ester 

which allows for acid-catalyzed cyclization with the indole nitrogen using para-

toluenesulfonic acid to give 11 in 49% yield over 2 steps.
24

 



www.manaraa.com

41 
 

 

Scheme 7. Synthesis of a 5H-indolo[2,1-a]isoquinoline (11) 

 

Conclusion 

 The Kraus indole synthesis is a novel approach to 2-substituted and 2,3-

disubstituted indoles.  Normally, an aminobenzyl phosphonium salt is employed with an 

appropriate aldehyde to give indoles in one pot in high yields.  A wide range of 

substitution patterns are achievable from simple benzaldehydes or -unsaturated 

aldehydes.  Studies have shown that aminobenzyl sulfones and nitriles are also 

compatable with the cyclization, although the nitrile is retained in the 3-position of the 

final product.  The Kraus indole synthesis is very direct, forming indoles in one step 

from commercially available or easily synthesized materials.  There is also flexibility 

inherent to this strategy due to the ability to modify substitution on the aldehyde 

component. 

 A wide variety of biologically important natural products containing the indole 

subunit are known and are continually being discovered, enhancing the utility of indole 
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syntheses.  The Kraus indole synthesis has been successfully applied to the synthesis of 

two natural product systems containing tetracyclic cores, isocryptolepine and a 5H-

indolo[2,1-a]isoquinoline.  This strategy was direct, creating three of the four rings in 

one step while leaving a functional group available to allow for formation of the final 

ring.  An advanced intermediate in the synthesis of isocryptolepine was accomplished in 

3 steps in 53% overall yield, while an entry into the indolo[2,1-a]isoquinoline series was 

achieved in 2 steps in 49% overall yield. 

 

Experimental 

All NMR spectra were obtained on a Varian VXR spectrometer, operating at 300 

or 400 MHz for 
1
H NMR and 75 or 100 MHz for 

13
C NMR instrument.  Thin-layer 

chromatography was performed using commercially available 250 micron silica gel 

plates (Analtech).  Preparative thin-layer chromatography was performed using 

commercially available 1000 micron silica get plates (Analtech).  Visualization of TLC 

plates was effected with short wavelength ultraviolet light (254 nm).  All reagents were 

used as obtained commercially unless otherwise noted.  High resolution mass spectra 

were recorded on an Agilent 6540 QTOF using EI, ESI, or ACPI.  All reagents were 

used directly as obtained from commercial suppliers unless otherwise noted. 

 

General procedure for 2-substituted indoles from aniline 1: 

In a 10 mL microwave reaction vessel (CEM Discover System) equipped with a 

magnetic stir bar, the 2-aminobenzyl phosphonium salt 1 (0.5 mmol), respective 
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aldehyde (0.5 mmol), and glacial acetic acid (11.4 L, 0.2 mmol) were added to distilled 

MeOH (3 mL).  The vial was capped properly and placed in the microwave.  Microwave 

irradiation was carried out at 80 °C for 10 min (fixed temperature).  After cooling the 

vial to rt, MeOH was removed under vacuum.  All MeOH must be removed before the 

next step.  Tetrahydrofuran (4 mL) was added to the mixture, followed by dropwise 

addition of a 1M tBuOK solution in THF (0.8 mL).  The resulting mixture was stirred at 

25 °C under argon for 1 h.  A saturated aqueous solution of NH4Cl (10 mL) was added to 

quench the reaction and the aqueous layer was extracted with EtOAc (3 x 10 mL).  The 

organic layers were combined and washed with brine (2 x 10 mL), dried with MgSO4, 

and filtered.  The filtrate was concentrated under vacuum and the residue was purified by 

silica gel flash column chromatography (hexanes:EtOAc) to give the pure indole 

products. 

 

2-(2-Nitrophenyl)indole (7): 

Prepared using the described general indole synthesis procedure.  
1
H NMR (400 MHz, 

acetone-d6):  = 10.65 (br s, 1H), 7.90 (d, J = 8 Hz, 1H), 7.81 (d, J = 6.8 Hz, 1H), 7.71 (t, 

J = 15.2 Hz, 1H), 7.64 (d, J = 8 Hz, 1H), 7.57 (t, J = 14 Hz, 1H), 7.48 (d, J = 8 Hz, 1H), 

7.20 (t, J = 14.4 Hz, 1H), 7.10 (t, J = 15.6 Hz, 1H), 6.68 (s, 1H).  
13

C NMR (acetone-d6): 

 = 205.8, 149.4, 137.8, 132.9, 132.5, 131.5, 129.1, 129.0, 127.1, 122.8, 120.9, 120.1, 

111.6, 102.7.  HRMS: m/z calcd for C14H10N2O2 [M
+
]: 238.07422; found: 238.07453. 
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Indolo[2,3-b]quinoline (8):
17

 

To a solution of 5 and paraformaldehyde (1.2 equiv) in MeCN in a sealable tube was 

added TFA (1 equiv) and heated to 80 °C for 2 h.  After cooling and concentrating in 

vacuo, the residue was dissolved in EtOAc and washed with sat. aq. NaHCO3, water, and 

brine.  The combined organic extracts were dried over MgSO4, filtered, concentrated and 

purified by flash chromatography to give 8 as a white solid in 81% yield.  
1
H NMR (400 

MHz, DMSO-d6):  = 12.68 (br s, 1H), 9.58 (s, 1H), 8.51 (dd, J = 1.0, 7.5 Hz, 1H), 8.30 

(d, J = 7.7 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.75-7.64 (m, 3H), 7.47 (d, J = 8.2 Hz, 1H), 

7.32 (d, J = 7.1 Hz, 1H).  
13

C NMR (DMSO-d6):  = 145.8, 145.1, 140.0, 139.3, 130.0, 

128.6, 126.5, 125.9, 122.3, 122.1, 121.0, 120.6, 117.4, 114.9, 112.0.  HRMS: m/z calcd 

for C15H10N2 [M
+
]: 218.0844; found: 218.0854. 

 

Indolo[2,1-a]isoquinolin-6(5H)-one (11):
24

 

The crude mixture obtained from the indole synthesis reaction of 1 and 9 was dissolved 

in CH2Cl2 and PTSA (1 equiv) was added.  After stirring for 6 h at RT, the reaction was 

quenched with water and extracted with CH2Cl2.  The combined organic layers were 

dried over MgSO4, filtered and concentrated to give a residue which was purified by 

flash chromatography to give 11 in 79% yield.  
1
H NMR (400 MHz, CDCl3):  = 8.54 
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(d, J = 7.6 Hz, 1H), 7.84 (d, J = 6.4 Hz, 1H), 7.59 (d, J = 6.8 Hz, 1H), 7.31-7.36 (m, 5H), 

7.03 (s, 1H), 4.10 (s, 2H).  
13

C NMR (CDCl3):  = 167.0, 135.3, 134.2, 130.6, 130.2, 

129.8, 128.7, 128.1, 127.8, 125.5, 124.8, 124.1, 120.7, 116.8, 103.5, 37.8.  HRMS: m/z 

calcd for C16 H11NO [M
+
]: 233.08406; found: 233.08431. 
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CHAPTER 3 

SYNTHETIC STUDIES TOWARDS OROIDIN 

 

Introduction 

 Natural products have traditionally possessed a wide variety of biological 

activities.  Alkaloids are one of the largest classes of natural compounds, with marine 

organisms being abundant sources.
1
  An important set of natural products are the 

bromopyrrole-imidazole alkaloids.  Although the structures of these alkaloids are very 

diverse, it appears that they all are derived biosynthetically from a common secondary 

metabolite, oroidin (1) and related compounds.
2
  These congeners are characterized by a 

bromopyrrole carboxamide linked by a propenyl chain to a 2-aminoimidazole (Scheme 

1).  Some of these congeners are represented by hymenidin (2), dispacamide B (3) and D 

(4). 

 

Scheme 1. Selected type 1 non-cyclized oroidin monomers 

 The bromopyrrole-imidazole alkaloids are generally classified into three separate 

types.  The first type is non-cyclized monomers which are represented by hymenidin (2) 

and dispacamide B and D (3, 4), as well as oroidin (1).  Intramolecular cyclized 

monomers such as stevensine (5) and spongiacidin B (6) are examples of a second type 
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of oroidin-based alkaloids (Scheme 2).  The third type of compounds is classified as 

monomeric intermolecular dimers.  A few examples are sceptrin (7), 

dibromopalau’amine (8), ageliferin (9), and axinellamine A and B (10, 11).  The second 

and third type of compounds are speculated to come from the group of non-cyclized 

monomers.
3
  Specifically, compounds 5, 7, 8, 9, 10 and 11 are believed to derive from 

oroidin through dimerization and consecutive functionalizations, while 6 comes from 

dispacamide.
4
  Interestingly, since these molecules are often found together in nature, the 

evidence points towards a divergent natural product library from 1 itself.
5
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Scheme 2. Selected type 2 and 3 oroidin bromopyrrole-imidazole alkaloids 

Due to the fascinating biosyntheses and biological activities, a great deal has 

been published towards the synthesis of oroidin-derived small molecules.
6
  All of the 

compounds listed in Scheme 2 have been accomplished to date,
7
 with palau’amine (14) 

proving the most difficult and attracting the most attention.  The synthesis of 14 was 

accomplished in 2010 by Baran and coworkers (Scheme 3).
8
  The key proved to be in the 
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macrocyclic compound 12, which was formed through a transannular cyclization from a 

previously synthesized compound.  This set up the key ring closure through its amidine 

tautomer (13) to give 14 in 0.015% overall yield in 25 steps from commercially available 

materials. 

 

Scheme 3. Key end-game of Baran synthesis of palau’amine (14) 

This diverse class of alkaloids contains compounds which have antiviral, 

antibacterial and antihistaminic activities to name a few.
2
  Perhaps the most publicized 

compound in the group, 14 has historically shown immunosuppressive and cytotoxic 

properties.
9
  It has recently been determined that this activity is due to 14 being able to 

modulate proteolytic activity of the human proteasome and immunoproteasome, thereby 

slowing the degradation of proteins.
10

  The similar dibromopalau’amine (8) has been 

shown to have promising activity as a trypanocidal (IC50 = 0.46 g/mL) and 

antileishmanial agent (IC50 = 1.09 g/mL).
11

  This study also proved that spongiacidin B 

(6) and dispacamide B (3) are promising antimalarial compounds with IC50 values of 

1.09 and 1.34 g/mL, respectively against P. falciparum. 

 While there are numerous compounds with more complex structures in the 

bromopyrrole-imidazole class of marine alkaloids, the main building block, oroidin (1) 
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possesses important biological activity as well.  Although the compound at the high end 

of molecular complexity in the oroidin alkaloid series, palau-amine (14) was ultimately 

synthesized, it still takes 25 steps to accomplish.  While the various modes of cyclization 

and dimerization of the non-cyclized monomers are intriguing and have received much 

attention in recent years, the relative simplicity of oroidin (1) would allow for a much 

more direct synthesis, greater ability for scale-up and the synthesis of analogues for 

structure-activity relationship studies.  It would also be interesting to see if analogues of 

oroidin would develop new modes of dimerization, cyclization and functionalization to 

create even more compounds related to this system which could show interesting 

activities. 

 Oroidin (1) was isolated from the Agelas sventres marine sponge in 1971 which 

is typically found in tropical water environments.
12

  Oroidin has been shown to possess 

fish-deterrent,
13

 antimalarial,
14

 and membrane depolarization interference
15

 activities.  

Recently, it has been discovered that oroidin also acts as an antibiofilm agent
16

 and 

inhibits the activity of multidrug resistant yeast enzymes.
17

 

 Bacterial biofilms have become a global threat causing billions of dollars of 

damage to engineering, medical and agricultural operations.
18

  A bacterial biofilm is 

defined as a community of microorganisms attached to a surface which are encased in an 

extracellular layer of biomolecules.  This encasing affords enhanced protection from 

conventional antibiotic treatments, sometimes greater than 1000 times more resistant 

than regular bacteria.
19

  Biofilms are becoming increasingly more prevalent in bacteria 

found in hospitals and medical facilities.
20

  The NIH estimates that 65-80% of human 
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infections are currently caused by bacterial biofilms.
21

  Initially, oroidin (1) and 

bromoageliferin (15) showed activity inhibiting Rhodospirillum salexigens, a gram-

negative marine bacterium which forms biofilms (Scheme 4).
22

  Compound 15 showed 

greater activity than parent compound 1, with IC50 values of 2.43 and 169 M, 

respectively.  In a separate study, oroidin (1) prevented V. vulnificus bacteria from 

producing biofilm colonies, showing it too could be an effective agent.
23

 

 

Scheme 4. First oroidin compounds to show antibiofilm activity 

 Based on this exciting activity, structure activity relationship (SAR) studies have 

been performed on the oroidin class of compounds as well as oroidin itself.  Based on 

the hypothesis from previous results that the 2-aminoimidazole subunit of oroidin has 

antibiofilm properties, analogues of oroidin were prepared to evaluate the role of the 

head, tail and linker of the molecule (Scheme 5).
24

 

 

Scheme 5. SAR studies of oroidin skeleton 
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 It was discovered that the 2-aminoimidazole head of oroidin was absolutely 

necessary to the antibiofilm activity of the molecule.  The unsaturation of the linker was 

found to not be necessary, while incorporation of the two bromine atoms on the pyrrole 

ring was important.
24  

Also, adjusting the linker chain length to two or four carbons 

lowered the activity of the compound.  N-methylation of the pyrrole ring gave a 

derivative, dihydrosventrin (16) which showed the best activity of the group of 

compounds tested with an IC50 of 115 m against A. baumannii (Scheme 6).  Additional 

compounds were prepared to increase the lipophilicity and steric bulk of the group 

attached to the pyrrole nitrogen.
25

  A 4-bromophenyl substituent (16a) proved to be the 

most active with an IC50 of 27 m.  These studies discovered some interesting trends in 

the biological activity of simple oroidin alkaloids.  It also showed that oroidin itself can 

be considered a valid starting point for making compounds that inhibit biofilms.   

 

Scheme 6. Select effective antibiofilm compounds 

 Oroidin has also been shown to inhibit the yeast enzyme Pdr5p, which is 

responsible for multidrug resistance in Saccharomyces cerevisiae.
17

  Multidrug 

resistance (MDR) refers to the ability of cells to resist many structurally diverse 

antitumor agents.  It is a critical problem in trying to develop treatments for cancer.
26

  A 

cell which has expressed the MDR phenotype creates excess amounts of membrane 
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proteins which act as efflux pumps, thus ejecting the anticancer agent before it can affect 

the tumor.
27

  When MDR is present, the cancer treatment is significantly less effective, 

regardless of the agent employed.  Oroidin showed an IC50 of 20 m against the Pdr5p 

yeast enzyme and initial studies have shown that it is a possible lead drug for health 

problems stemming from MDR. 

Based on these studies that show oroidin, or analogues thereof, possess 

interesting biological activities, we were interested in developing a strategically distinct 

synthesis of oroidin.  In line with the amount of interest and synthetic effort towards the 

oroidin class of compounds, there have been many reported syntheses of oroidin.  One 

example (Scheme 7) is the cyclization of -halo ketones and N-acetylguanidine to give 

allylic amine (17) after deprotection which can react with pyrrole (18) to form the 

requisite amide bond.
28

 Another route utilizes Suzuki coupling
29

 between imidazole 

iodide (19) and vinyl boronate (20) followed by electrophilic addition of tosyl azide to 

give an intermediate (21) which can be elaborated similarly to oroidin (1).  The 

condensation of cyanamide and an -halo ketone, is also well known.
30
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Scheme 7. Selected oroidin syntheses 

 Romo and coworkers expanded on the synthesis of key intermediate 21 towards 

15
N-labeled oroidin (Scheme 8), starting with commercially available urocanic acid 

(22).
31

  After esterification, the imidazole nitrogen was protected by a trityl group to give 

compound 23. Reduction of the ester to the alcohol and concomitant tert-

butyldimethylsilyl (TBS) protection gave 24 which was converted into the azide 25 in 

88% yield after deprotection with tetra-n-butylammonium fluoride (TBAF).  The allylic 
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alcohol was then transformed into the allylic chloride through a mesylate intermediate.  

A Gabriel synthesis was performed on the chloride with 
15

N potassium phthalimide to 

give the protected allylic amine 26, which intersects previous syntheses after 

deprotection.  This nitrogen-labeled oroidin will help study the biosynthetic pathway of 

this class of compounds. 

 

Scheme 8. Romo synthesis of 
15

N oroidin 

 In 2010, Ando published a route to oroidin using the condensation of an -halo 

ketone with a protected guanidine (Scheme 9).
32

  Ketone 27, containing a masked 

aldehyde moiety, reacted with Boc-guanidine to give the functionalized 2-

aminoimidazole (28) in 47% yield as the only isolated product.  Attempts to Boc-protect 

the exocyclic amine, followed by acid catalyzed deprotection of the acetal gave the 

aldehyde 29 with the Boc group now on the other amine.  This was easily mitigated by 

using protection conditions again to obtain the bis-Boc-protected imidazole (30), which 
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underwent a Julia-Kocienski olefination
33

 with known sulfone 31 to give the key 

protected intermediate 32 in 69% yield.  After deprotection, the allylic amine was 

produced, which has been used many times previously to form the key oroidin amide 

bond with the appropriate trichloromethylpyrrole derivative (18). 

 

Scheme 9. Ando synthesis of oroidin 

 

Results and Discussion 

 The more recent discoveries of multidrug resistance and biofilm inhibition 

sparked our interest in oroidin.  With numerous syntheses already published, we sought a 

strategically distinct method to create the core structure of oroidin, namely how to link 

the two important heterocycles together.  Our novel route was determined to be through 

a cross metathesis reaction (Scheme 10) of a 2-amino-4-vinylimidazole (34) and a 



www.manaraa.com

59 
 

pyrrole allylic amide (35).  Compound 35 can come from often-used pyrrole (18) and 

allyl amine while we aim to develop a new route to imidazole 34. 

 

Scheme 10. Retrosynthesis of oroidin 

Previous work has shown that the 2-aminoimidazole piece can be constructed 

from an -halo ketone and a guanidine derivative.
28, 32

  Essentially, the partner to the 

guanidine compound needs to possess two electrophilic sites in a position to cyclize to 

the 5-membered ring and possess the necessary oxidation state of the imidazole.  

Functionality attached to the 4-position of the ring would also be necessary to extend to 

oroidin.  Our approach to this problem centered on using an alkyne with two propargylic 

leaving groups (36) to cyclize with a protected guanidine (Scheme 11).  The mechanism 

is believed to happen by an SN2 displacement followed by an intramolecular SN2’ 

reaction to give a cyclized intermediate (37) containing an allene which can aromatize to 

give the protected 2-amino-4-vinylimidazole. 
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Scheme 11. Approach towards 4-vinyl-2-aminoimidazoles 

 We started with commercially available 1,4-dichloro-2-butyne (38).  Attempts 

were made to cyclize with guanidine as well as acetyl- and Boc-protected guanidine 

(Scheme 12).  Differing polar solvents as well as bases ultimately proved unsuccessful.  

Considering the chlorides seemed to not be good enough leaving groups, we turned to 

the dibromobutyne (39), which was prepared from the corresponding diol.
34

  Employing 

Boc-guanidine
35

 due to its increased solubility in organic solvents and greater 

nucleophilicity, we obtained the cyclized product in 55% yield in refluxing 

tetrahydrofuran.  Not surprisingly, the 1,4-ditosyl-2-butyne
36

 also gave the desired 

product in 52% yield. 
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Scheme 12. Studies towards 4-vinyl-2-aminoimidazoles 

 With a new route to vinylaminoimidazoles in hand, we focused our attention on 

the metathesis partner, pyrrole 35.  Starting from pyrrole, acylation at the 2-position with 

trichloroacetyl chloride gave compound 40,
37

 which was dibrominated to give 18
38

 in 

high yields (Scheme 13).  Amide formation using allylamine in dimethylformamide gave 

the metathesis precursor 35 in 86% yield.
39

 

 

Scheme 13. Synthesis of metathesis precursor 35 
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 With the necessary compounds in hand, we moved forward to the key cross 

metathesis.  Grubbs has reported the cross metathesis of styrenes with allylic substituted 

olefins,
40

 while other vinyl aromatic heterocycles such as furans and thiophenes, as well 

as styrenes have successfully reacted with 1-octene
41

 using a Schrock molybdenum 

catalyst.  Allylic amide 35 has also been employed for cross metathesis with 

crotonaldehyde (Scheme 14) using Grubbs-Hoveyda second generation catalyst (41) and 

triphenyl borate in refluxing toluene.
42

  Compound 42 was ultimately obtained in 60% 

yield after concomitant cyclization. 

 

Scheme 14. Cross metathesis of 35 with crotonaldehyde 

 Based on this precedent, we then studied the metathesis reaction.  The reaction of 

allylic amide 35 and 2-amino-4-vinylimidazole (43a) was attempted using Grubbs’ 

second generation, Grubbs-Hoveyda second generation and Schrock catalysts.  Standard 

conditions were employed for each catalyst, refluxing dichloromethane or 

dichloroethane for Grubbs’ II, and refluxing toluene for Grubbs-Hoveyda II and the 

Schrock catalyst (Scheme 15).  Unfortunately, none of these conditions gave the desired 

cross metathesis product with mainly only returned starting materials observed in all of 

these cases. 
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Scheme 15.  Cross metathesis attempts 

 Since amines are known to coordinate with the transition metal centers of 

metathesis catalysts,
43

 we protected the exocyclic amine of 43a with a Boc group using 

sodium bis(trimethylsilyl)amide and Boc anhydride to give compound 43b in 72% yield 

(Scheme 16).  Surprisingly, we still did not see any promise in the cross metathesis 

reaction series of 43b with 35. 

  

Scheme 16. Synthesis of di-Boc-protected imidazole (43b) 

 Based on research by Grubbs and coworkers which shows a high-yielding 

metathesis between styrene and cis-1,4-dichloro-2-butene with Grubbs II catalyst,
40

 we 

employed this allylic chloride as the metathesis partner for 43b.  The product (44) could 
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undergo an SN2 reaction with an amine to give a compound which would be equivalent 

to the advanced intermediate in most of the published syntheses towards oroidin. 

(Scheme 17).  Compound 44 proved to be unstable to column chromatography and 

attempts to react it with ammonia or potassium phthalimide were unsuccessful. 

  

Scheme 17. Metathesis with cis-1,4-dichloro-2-butene 

With metathesis seemingly an ineffective route, we decided to try to 

functionalize the exocyclic double bond of 43b instead.  The Ando synthesis
32

 uses the 

2-amino-4-formylimidazole as an advanced intermediate, therefore getting to this 

compound would constitute a formal synthesis.  Many logical reactions on carbon-

carbon double bonds were attempted.  Ozonolysis, followed by a reductive workup, or 

dihydroxylation with osmium tetraoxide followed by oxidative cleavage with sodium 

periodate
44

 were unsuccessful (Scheme 18).  A Heck-type reaction using cobalt(II) to 

generate free-radicals allows for alkyl halides where a traditional Heck reaction has 

problems due to -elimination of the intermediate palladium species.
45

  Attempts to 

perform this transformation using commercially available N-(bromomethyl)phthalimide 
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(45) also proved problematic.  Finally, we attempted an aminomethylation using 

paraformaldehyde, acetic acid and a secondary amine.
46

  Diallylamine,  and 

dibenzylamine were employed with 43b but were met with the same difficulties as 

before.  We believe that standard chemistry has been unsuccessful on this double bond 

due to the ring being electron-rich, making the 5-position reactive and possibly more 

reactive than the double bond.  The instability of the Boc groups to harsh reaction 

conditions could also have been contributing to the problems, considering the potentially 

free amino groups can be reactive and also increase the water solubility of the 

deprotected imidazole intermediates. 

 

 Scheme 18.  Attempts to functionalize 43b 

 Without any success modifying the vinylimidazole, we then turned our thinking 

towards installing the required functionality before the imidazole cyclization reaction.  If 
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the aminomethyl group we attempted to install previously was already attached to the 

alkyne (46), we would be able to cyclize to the desired intermediate which could be 

coupled to pyrrole 18 to give the core structure of oroidin (Scheme 19). 

 
 Scheme 19. Cyclization to core structure of 1 

 We originally looked toward a model system to see if additional functionality 

could be tolerated on the alkyne during cyclization.  Propargyl alcohol was treated with 

2 equivalents of n-butyllithium and reacted with acetaldehyde
47

 to give diol 47 which 

was ditosylated to give cyclization precursor 48 (Scheme 20).  We chose tosylates as our 

leaving groups because the reaction conditions were milder than synthesizing the 

dibromide.  Our standard conditions afforded the imidazole product (49) with an 

additional methyl group in moderate yield. 

  

Scheme 20. Synthesis of model compound 49 
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 With this success, we went after the desired compound with a protected 

aminomethyl group attached to the alkyne.  We chose N-(formylmethyl)phthalimide (50) 

due to its ease of synthesis
48

 and stability.  Similarly, reaction of the dianion of propargyl 

alcohol with 50 gave diol 51 with the protected aminomethyl group installed in 55% 

yield (Scheme 21).  Attempted ditosylation gave a monotosylated product and returned 

starting diol.  We reasoned that the neighboring phthalimide participated in keeping the 

internal alcohol ultimately unprotected. 

 

Scheme 21. Attempted cyclization to imidazole 

 We believe the zwitterionic form of the phthalimide group allows an 

intramolecular SN2 displacement of the internal tosylate through a 5-membered ring 

transition state as it forms (Scheme 22).  The resulting imine (52) can be hydrolyzed 

during the aqueous workup to give a hemiketal (53) which falls apart back to the 

unprotected alcohol. 
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Scheme 22.  Phthalimide participation 

 After seeing little success working towards the fully oxidized imidazole system, 

we decided to move towards the dihydroimidazole instead.  During the cyclization 

processes of the more complex compounds of the oroidin alkaloids, the imidazole ring 

frequently loses its aromaticity.  Since these compounds, such as axinellamines A (10) 

and B (11) and palau’amine (14) show promising biological activity, dihydrooroidin 

analogues would be interesting to study as well. 

 Our original work into the dihydro series began with commercially available 1,2-

isopropylideneglycerol (54).  Oxidation of the alcohol to an aldehyde followed by 

Horner-Wadsworth-Emmons olefination gave unsaturated ester 55 in good yields 

(Scheme 23).
49

  Reduction of the ester with diisobutylaluminum hydride gave allylic 
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alcohol 56 which underwent a Mitsonobu reaction with tri-Boc protected guanidine, 

diisopropyl azodicarboxylate and triphenylphosphine to give 57,
50

 which was set up for 

intramolecular cyclization to give the dihydroimidazole.  Unfortunately, the Mitsonobu 

reaction gave a low yield and the following cyclization step was unsuccessful using 

N,N-diisopropylethylamine or sodium hydride as base.  The product was not observed at 

temperatures lower than 60 °C, while at 80 °C, the isopropylidene acetal was opened to 

the diol. 

 

Scheme 23. Attempt towards dihydroimidazole intermediate 

 We then decided to modify our imidazole cyclization procedure in an attempt to 

make 2-amino-4-vinyldihydroimidazoles.  Since we believe the electrophilicity of the 

aminoimidazole ring plays a role in the limited reactivity of the exocyclic double bond, 

we should be able to functionalize the double bond on the dihydro version.  Employing 



www.manaraa.com

70 
 

similar chemistry as for forming the imidazole, we used trans-1,4-dibromo-2-butene 

which reacted with di-Boc guanidine to give the dihydro product 58 in 55% yield 

(Scheme 24).  When tri-Boc guanidine
51

 was employed, 74% of the product (59) was 

obtained at an optimized temperature of 80 °C.  The standard conditions for imidazole 

cyclization were not successful for either system.  Dimethylformamide and sodium 

hydride were necessary for these reactions. 

 

Scheme 24. Dihydroimidazole synthesis 

 With the dihydroimidazole compounds in hand, we attempted some of the 

reactions to functionalize the double bond.  Since we optimized the reaction and will 

have to deprotect the Boc groups anyways, we decided to use compound 59 for further 

elaboration. While cross metathesis using the same conditions and catalysts was 

unsuccessful, we were able to form the aldehyde (60) through ozonolysis (Scheme 25).  

The crystalline product was suitable for reaction without further purification. 
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Scheme 25. Ozonolysis of 59. 

With the aldehyde now available, we thought to employ parts of the Romo synthesis
31

 to 

get to the key allylic amine intermediate towards oroidin.  Compound 60 underwent a 

Wittig reaction with commercially available (triphenylphosphoranylidene)acetaldehyde 

to give unsaturated aldehyde 61 (Scheme 26).
52

   The Wittig reaction was sluggish at 

room temperature, but reaction in refluxing tetrahydrofuran afforded the desired product 

in 50% yield..  Attempts to reduce the aldehyde to the allylic alcohol
53

 were surprisingly 

wrought with difficulties related to the loss of Boc groups. 

 

Scheme 26. Towards key dihydro intermediate 

 This result led us to try to get to the allylic amine directly from the unsaturated 

aldehyde (61).  A successful reductive amination on this aldehyde would give the 

necessary protected allylic amine.  Reductive amination has been shown to generate 
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allylic amines using sodium triacetoxyborohydride
54

 and allylic aldehydes
55

 under acidic 

conditions in dichloroethane (DCE).  We employed allylamine, benzylamine and p-

methoxybenzylamine (PMB) to react with 61, but the transformation to the allylic amine 

was unsuccessful in all three cases (Scheme 27). 

 

Scheme 27. Attempted reductive amination of 61 

 We then started looking at putting together the dihydro compound with three 

components (Scheme 28); pyrrole 18, phosphonium salt 62, and our dihydroimidazole 

aldehyde 60.  The question became in which order to form the key amide bond and 

carbon-carbon double bond.  Unfortunately, it turned out that the Wittig reaction 

between compounds 62 and 60 was unsuccessful. 

 

Scheme 28. Three-part approach retrosynthesis 
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 We were then left with forming the amide bond first.  Condensation of 18 with 

63,
39

 which came from commercially available 2-bromoethylamine hydrobromide and 

triphenylphosphine,
56

 gave phosphonium salt 64
57

 in 64% yield.  This compound was set 

up for a trianion Wittig reaction with aldehyde 60.  To our dismay, this similar 

combination of aliphatic aldehyde and unstabilized Wittig reagent proved to be an 

unproductive route towards our desired product. 

 

Scheme 29. Trianion Wittig reaction 

 With these attempts to transform the dihydroimidazole aldehyde (60) ultimately 

not getting us to the final dihydrooroidin product, we needed to look back at oxidizing 

60 to the imidazole aldehyde represented in Ando’s synthesis of oroidin.
32  

We attempted 

a reaction published by the Kraus group
58

 which installs a phenylsulfide group alpha to 

the carbonyl which can then be oxidized and eliminated to the unsaturated carbonyl 

compound (Scheme 30).  This reaction did not show promise on our system either. 
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Scheme 30. Direct oxidation of aldehyde 60. 

 

Conclusion 

 We have devised and attempted many different approaches towards oroidin (1) 

and dihydrooroidin.  We have explored ultimately unsuccessful routes but have 

developed new chemistry along the way and have gained more understanding on how 

the intermediate compounds toward this important marine alkaloid react.  This 

knowledge should lead to improved syntheses of 1 in the near future. 

 One idea we are still currently working on is oxidation of 60 to the imidazole 

aldehyde.  Saegusa oxidation conditions have been used extensively to convert enol silyl 

ethers to unsaturated aldehydes using palladium(II) acetate.
59

  We believe we can 

oxidize 60 by pre-forming the enol silyl ether using an excess of diisopropylethylamine 

and trimethylsilyl triflate (TMSOTf).  This intermediate should be able to be oxidized by 

stoichiometric amounts of palladium(II) to the desired aldehyde (Scheme 31) to intercept 

Ando’s oroidin synthesis.  Our contributions to this work are in developing a novel 

method to form 2-amino-4-vinylimidazoles and dihydroimidazoles. 

 

Scheme 31. Saegusa oxidation 
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Experimental 

All NMR spectra were obtained on a Varian VXR spectrometer, operating at 300 

or 400 MHz for 
1
H NMR and 75 or 100 MHz for 

13
C NMR instrument.  Thin-layer 

chromatography was performed using commercially available 250 micron silica gel 

plates (Analtech).  Preparative thin-layer chromatography was performed using 

commercially available 1000 micron silica get plates (Analtech).  Visualization of TLC 

plates was effected with short wavelength ultraviolet light (254 nm) or a potassium 

permanganate stain.  All reagents were used as obtained commercially unless otherwise 

noted.  High resolution mass spectra were recorded on an Agilent 6540 QTOF using EI, 

ESI, or ACPI.  All reagents were used directly as obtained from commercial suppliers 

unless otherwise noted. 

 

tert-Butyl 2-amino-4-vinyl-1H-imidazole-1-carboxylate (43a): 

To a solution of N-Boc-guanidine (3 equiv) in tetrahydrofuran was added 1,4-dibromo-

2-butyne (1 equiv) and N,N-diisopropylethylamine (3 equiv) sequentially.  The mixture 

was refluxed for 12 h, and then cooled to rt and quenched with sat. aq. NH4Cl.  The 

aqueous layer was extracted with EtOAc and the combined organic extracts were 

washed with brine and dried over MgSO4.   Filtration and concentration in vacuo gave 

the crude product which was purified via flash column chromatography 

(hexanes:EtOAc) to give 43a in 55% yield.  
1
H NMR (300 MHz, CDCl3):  = 6.63 (s, 
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1H), 6.31 (dd, J = 10.8, 17.4 Hz, 1H), 6.20 (br s, 2H), 5.61 (dd, J = 1.8, 17.4 Hz, 1H), 

5.05 (dd, J = 1.8, 10.8 Hz, 1H), 1.50 (s, 9H).  
13

C NMR (100 MHz, CDCl3):  = 151.6, 

149.4, 136.5, 127.8, 113.5, 108.7, 84.8, 28.0. 

 

tert-Butyl 2-((tert-butoxycarbonyl)amino)-4-vinyl-1H-imidazole-1-carboxylate 

(43b): 

To a solution of 43a in THF was added Boc2O (1.2 equiv) and then a solution of 

NaHMDS (1.0 M, 1.1 equiv) in THF dropwise at 0 °C.  After warming to rt overnight, 

the solution was quenched with sat. aq. NH4Cl and extracted with EtOAc, washing with 

brine.  The combined organic phases were dried over MgSO4, and concentrated to give 

43b in 73% yield after flash chromatography (hexanes:EtOAc).  
1
H NMR (300 MHz, 

CDCl3):  = 9.15 (br s, 1H), 6.90 (s, 1H), 6.46 (dd, J = 11.1, 17.4 Hz, 1H), 5.94 (dd, J = 

1.9, 17.3 Hz, 1H), 5.23 (dd, J = 1.5, 12.3 Hz, 1H), 1.53 (s, 9H), 1.50 (s, 9H). 

 

Pent-2-yne-1,4-diol (47): 

To a solution of propargyl alcohol in THF was added nBuLi (2.2 equiv) at -78 °C.  After 

stirring 30 min, acetaldehyde (1.1 equiv) was added, stirred for 1 h at -78 °C and 

quenched with sat. aq. NH4Cl.  The crude mixture was extracted with Et2O, washed with 

brine and dried over MgSO4, followed by filtration and concentration.  The residue was 

purified via flash chromatography (hexanes:EtOAc) to give 47 in 65% yield.  
1
H NMR 
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(300 MHz, CDCl3):  = 4.57 (q, J = 6.3 Hz, 1H), 4.29 (s, 2H), 3.93 (br s, 1H), 3.86 (br s, 

1H), 1.44 (d, J = 6.6 Hz, 3H). 

 

Pent-2-yne-1,4-diyl bis(4-methylbenzenesulfonate) (48): 

Following the procedure for compound 47, instead of quenching with NH4Cl, TsCl (2.2 

equiv) was added and allowed to warm to rt overnight.  After diluting with hexanes, the 

solid was filtered and the residue was purified by flash chromatography 

(hexanes:EtOAc) to give 48 as a dark yellow liquid in 22% from propargyl alcohol.  
1
H 

NMR (300 MHz, CDCl3):  = 7.73 (d, J = 7.8 Hz, 4H), 7.34 (d, J = 6.6 Hz, 4H), 5.02 (q, 

J = 6.9 Hz, 1H), 4.48 (d, J = 0.9 Hz, 2H), 2.43 (s, 6H), 1.37 (d, J = 6.6 Hz, 3H). 

 

tert-Butyl 2-amino-4-(prop-1-en-1-yl)-1H-imidazole-1-carboxylate (49): 

Following the same procedure as for cyclization to 43a, 48 was employed to give 49 in 

40% yield as a clear oil after flash chromatography (hexanes:EtOAc).  
1
H HMR (300 

MHz, CDCl3):  = 6.72 (s, 1H), 6.32-6.22 (m, 1H), 6.07 (d, J = 12 Hz, 1H), 5.82 (br s, 

2H), 1.94 (dd, J = 1.2, 7.2 Hz, 3H), 1.59 (s, 9H). 

 

2-(2-5-Dihydroxypent-3-yn-1-yl)isoindoline-1,3-dione (51): 
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Following the procedure for 47, the dianion of propargyl alcohol was quenched with N-

(formylmethyl)phthalimide (50) to give 51 in 55% yield after flash chromatography 

(hexanes:EtOAc).  
1
H NMR (300 MHz, CDCl3):  = 7.88 (dd, J = 3.3, 5.4 Hz, 2H), 7.75 

(dd, J = 3.0, 5.4 Hz, 2H), 4.84-4.74 (m, 1H), 4.26 (s, 2H), 4.06 (dd, J = 6.3, 14.7 Hz, 

1H), 3.95 (dd, J = 4.5, 14.4 Hz, 1H). 

 

4,5-Isopropylidene-1-(tri(tert-butoxycarbonyl)guanidyl)-pent-2-ene (57): 

To a solution of allylic alcohol 56 and tri-Boc-guanidine (3 equiv) in THF was added 

PPh3 (1.5 equiv).  At -15 °C, DIAD (1.5 equiv) was added dropwise and stirred at 0 °C 

for 1 h.  The reaction was concentrated and the residue was purified via flash 

chromatography to give 57 in 45% yield.  The product contained unreacted DIAD which 

was difficult to fully purify.  
1
H NMR (300 MHz, CDCl3):  = 5.90-5.80 (m, 1H), 5.68-

5.59 (m, 1H), 4.64 (br s, 1H), 4.52-4.40 (m, 1H), 4.37 (d, J = 6 Hz, 1H), 4.10 (d, J = 7.2 

Hz, 1H), 4.05 (t, J = 7.2 Hz, 1H), 3.55 (t, J = 7.8 Hz, 1H), 1.49 (s, 9H), 1.48 (s, 9H), 1.47 

(s, 9H), 1.45 (s, 3H), 1.43 (s, 3H).  HRMS: m/z calcd for C24H41N3O8 [M
+
]: 500.2913; 

found: 500.2971. 

 

Di-tert-butyl 2-imino-4-vinylimidazolidine-1,3-dicarboxylate (58): 
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To a slurry of NaH (2 equiv) in DMF was added 1,3-bis(tert-butoxycarbonyl)guanidine 

(1 equiv) at 0 °C.  After vigorous bubbling, trans-1,4-dibromo-2-butene was added in 

one portion.  The reaction was allowed to warm to rt overnight, quenched with sat. aq. 

NH4Cl and extracted with EtOAc, washing with brine.  After drying over MgSO4, 

filtering and concentrating in vacuo, the residue was purified with flash chromatography 

(hexanes:EtOAc) to give 58 in 55% yield.  
1
H NMR (300 MHz, CDCl3):  = 5.81-5.72 

(m, 1H), 5.19 (d, J = 16.2 Hz, 1H), 5.10 (d, J = 10.2 Hz, 1H), 4.32 (q, J = 7.5 Hz, 1H), 

3.87 (t, J = 9.9 Hz, 1H), 3.39 (dd, J = 6.9, 10.5 Hz, 1H), 1.41 (s, 9H), 1.38 (s, 9H). 

 

Di-tert-butyl 2-((tert-butyoxycarbonyl)imino)-4-vinylimidazolidine-1,3 

dicarboxylate (59): 

To a slurry of NaH (2 equiv) in DMF was added N, N’, N’’-tri-Boc-guanidine (1 equiv) 

at 0 °C.  After 30 mins, trans-1,4-dibromo-2-butene was added in one portion.  The 

reaction was warmed to rt, then heated to 80 °C for 12 h.  After cooling, the reaction was 

quenched with sat. aq. NH4Cl and extracted with EtOAc and brine, dried over MgSO4, 

filtered and concentrated to give crude 59 in 74% yield, which was sufficiently pure for 

use in the next step.  
1
H NMR (300 MHz, CDCl3):  = 5.82-5.71 (m, 1H), 5.39 (d, J = 

16.8 Hz, 1H), 5.23 (d, J = 10.2 Hz, 1H), 4.55 (t, J = 6.3 Hz, 1H), 3.82 (dd, J = 8.4, 10.5 

Hz, 1H), 3.57 (dd, J = 2.1, 10.8 Hz, 1H), 1.48 (s, 9H), 1.46 (s, 9H), 1.44 (s, 9H).  
13

C 

NMR (75 MHz, CDCl3):  = 158.2, 149.6, 149.3, 143.5, 134.6, 117.5, 83.3, 83.2, 80.0, 
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56.0, 48.6, 28.4, 28.2, 28.1.  HRMS: m/z calcd for C20H33N3O6 [M
+
]: 412.2413; found: 

412.2440. 

 

Di-tert-butyl 2-((tert-butoxycarbonyl)imino)-4-formylimidazolidine-1,3-

dicarboxylate (60): 

To a solution of 59 in CH2Cl2 was passed O3 at -78 °C until the solution persists a blue 

color.  The mixture was purged with argon until clear again, and Me2S was added at -78 

°C.  After warming to rt over 24 h, the solution was quenched with water, extracted with 

CH2Cl2, washed with copious amounts of water and brine (to remove DMSO), dried 

over MgSO4, filtered and concentrated.  A slightly off-white solid is obtained in 68% 

and is sufficiently pure for further reactions.  Attempts to purify the crude solid by flash 

chromatography lead to loss of the imine Boc group.   
1
H NMR (300 MHz, CDCl3):  = 

9.59 (d, J = 1.5 Hz, 1H), 4.54-4.45 (m, 1H), 3.85 (dd, J = 6.0, 17.4 Hz, 1H), 3.75 (dd, J = 

4.5, 11.1 Hz, 1H), 1.47 (s, 9H), 1.46 (s, 9H), 1.45 (s, 9H). 

 

Di-tert-butyl 2-((tert-butoxycarbonyl)imino)-4-(3-oxoprop-1-en-1-yl)imidazolidine-

1,3-dicarboxylate (61): 

Compound 60 and (triphenylphosphoranylidene)acetaldehyde (1.1 equiv) in THF were 

heated to 80 °C for 5 h.  The mixture was cooled, concentrated and purified by flash 
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chromatography (3:1 – 1:1 hexanes:EtOAc) to give 61 in 50% yield as a yellow oil.  
1
H 

NMR (300 MHz, CDCl3):  = 9.57 (d, J = 7.5 Hz, 1H), 6.80-6.68 (m, 1H), 6.21 (dd, J = 

7.5, 15.9 Hz, 1H), 4.80 (dt, J = 3.0, 9.6 Hz, 1H), 3.94 (t, J = 10.8 Hz, 1H), 3.56 (dd, J = 

3.3, 11.1 Hz, 1H), 1.49 (s, 9H), 1.47 (s, 9H), 1.42 (s, 9H).  HRMS: m/z calcd for 

C21H33N3O7 [M
+
]: 440.2332; found: 440.2396. 

 

4,5-Dibromo-N-(2-(triphenylphosphanyl)ethyl)-1H-pyrrole-2-carboxamide bromide 

(64): 

To a solution of 63 in DMF was added K2CO3 (2.2 equiv).  After stirring 5 min, 18 (1.1 

equiv) was added and stirred 16 h.  The crude mixture was quenched with water, 

extracted with CH2Cl2, washed with brine, dried over MgSO4, filtered and concentrated.  

The residue was purified with flash chromatography (10:1 – 5:1 hexanes:EtOAc) to give 

64 as a white solid in 64% yield.  
1
H NMR (300 MHz, CDCl3):  = 9.39 (br s, 1H), 7.92-

7.57 (m, 15H), 6.81 (s, 1H), 3.87-3.78 (m, 2H), 3.56-3.48 (m, 2H). 
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GENERAL CONCLUSIONS 

 

 The biorenewable synthesis of an important industrial compound, as well as the 

synthesis and study of heterocyclic natural products have been described in this 

dissertation.  Chapter 1 focused on the development of a renewable synthesis of 

terephthalic acid, a precursor to food and beverage containers, produced worldwide in 

over 50 million tons a year.  Malic acid, readily available from fruits and fermentation 

processes, was converted in high yields to coumalic acid using a strong acid as catalyst.  

Coumalic acid has been shown as the platform chemical for our novel one-pot Diels-

Alder-decarboxylation-aromatization sequence which gives disubstituted aromatic 

compounds, such as terephthalic acid. 

Chapter 2 discussed the Kraus indole synthesis and its application to natural 

products.  A phosphonium salt was employed as the leaving group in the key six-

electron ring closure step.  Starting materials were chosen that would yield indoles 

which have the required functionality to further elaborate to natural product systems 

with diverse biological activities.  Isocryptolepine, as well as the parent structure of the 

indolo[2,1-a]isoquinoline series of compounds have been prepared in good yields using 

our novel route to indoles. 

Chapter 3 described our efforts towards the synthesis of the marine alkaloid 

oroidin.  Recent discovery of its antibiofilm activity make this compound an important 

target for synthesis, along with structural analogues.  We initially approached the 

compound with a cross metathesis reaction to link the 2-aminoimidazole head and 
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bromopyrrole tail of the molecule.  We developed a key cyclization of a protected 

guanidine with 1,4-dibromo-2-butyne to give 2-amino-4-vinylimidazole products.  We 

also pursued routes towards the dihydroimidazole analogue, seeking new compounds for 

study.  Using 1,4-dibromo-2-butene and the guanidine furnished the dihydro structure.  

Based on the poor reactivity of the vinylimidazole system, we focused on pursuing an 

oxidation of the dihydro compound to the imidazole which would intersect with previous 

syntheses of the compound. 
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